13 February 2012

TECHNICAL REPORT

CP36531-18AJ

Anisotropic Conductive Film for Chip on Glass

- Trial products -

ADVANCED MATERIAL DIVISION Products Development Department

Note on the characteristic data given - Data on the characteristics of the products described in this document based on the results of evaluations carried out by the company. This does not guarantee that the characteristics of the product conform with your usage environment. Before use, review the usage conditions based on evaluation data obtained from the equipment and substrates actually used.

Sony Chemical & Information Device Corporation

Features

- -COG application for TFT
- -Interconnect a small-to-medium-sized FPD with an IC chip.
- -Fine pitch (smaller and Insulated particle)
- -Low temperature bonding
- -Low warpage model

Specifications

Items		CP36531-18AJ	Remarks
Curing system		Epoxy-Cation	* 1
Structure and thickness	1) ACF-layer	6µm	$\frac{1}{2}$
	2) NCF-layer	12µm	
	3) Base film / color	38µm / white	
Conductive particles	1) Material	Ni plated polymer	1) 2)
	2) Insulator coated	Yes	
	Particle diameter	3µm	
	Particle density	61K pcs/mm ²	Design value. Calculated in ACF layer
Minimum overlap area of conductors		1200μm²	$(Average -4.5\sigma \ge 3pcs) *2$
Minimum bump space		12µm	Space between bumps.
Minimum conductor space		7µm	Space between neighboring circuits.

^{*1:} There is a possibility that interference of cation curing reaction happens depending on the material. (PI layer of IC, Panel with Soda lime glass, etc). Confirmation tests of the interference is required on each material.

^{*2:} Where the faced conductor overlaps.

Bonding conditions and Properties

Bonding conditions *5

items		CP36531-18AJ	Remarks
ACF laminating conditions	Temperature	50∼80°C	*1
	Pressure	1.0MPa	*3
	Time	1~2sec	*2
Main bonding conditions	Temperature	160∼180°C	*1
	Pressure	40∼80MPa	*4
	Time	5sec	*2

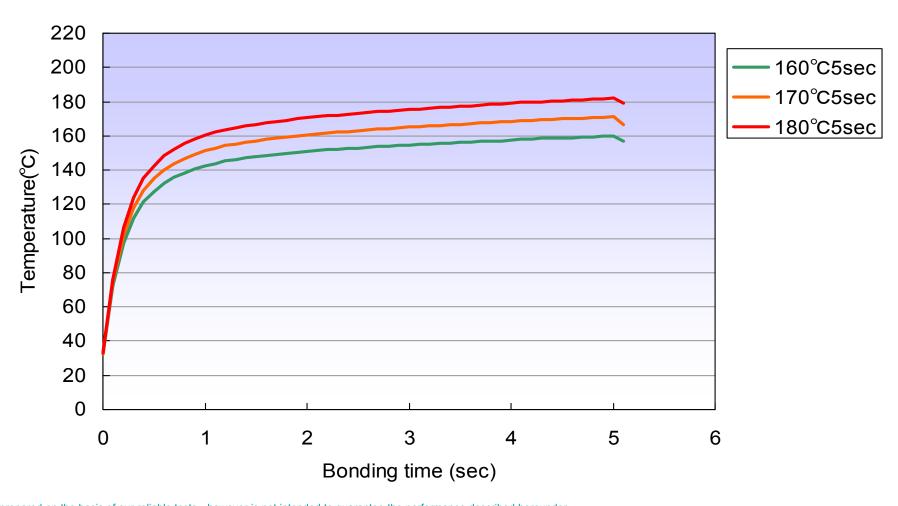
Properties of cured ACF

items		CP36531-18AJ	Remarks
Elastic modulus	at 30°C	3.0GPa	DMA
Glass transition temperature (Tg)		146 °C	DMA, tanô peak

^{*1:} Temperature of ACF lamination and main bonding: It is not equipment temperature, but actual temperature of ACF.

^{*2:} Time of ACF lamination and main bonding: Time from the start of bonding to the point where the temperature reaches the target.

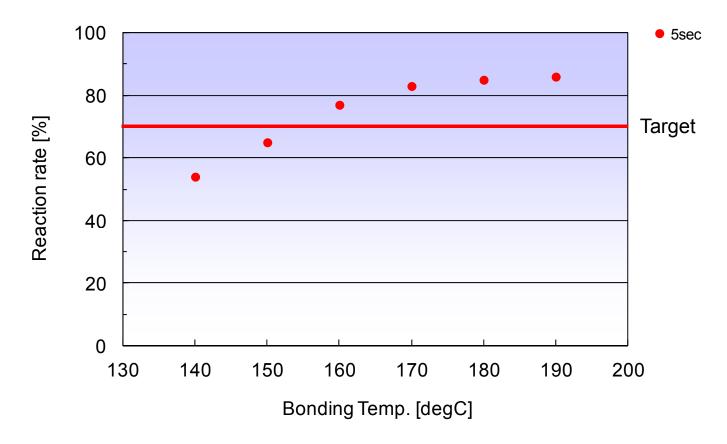
^{*3:} Pressure of ACF lamination: It is calculated based on the area of ACF lamination.


^{*4:} The pressure is calculated based on the total area of bumps.

^{*5:} Bonding condition may differ depending on chip size and metal pattern. We recommend this as a starting point to determine your own optimized conditions.

Bonding Temperature Profile

Measurement : Date Logger Cushion material Teflon 50µmt



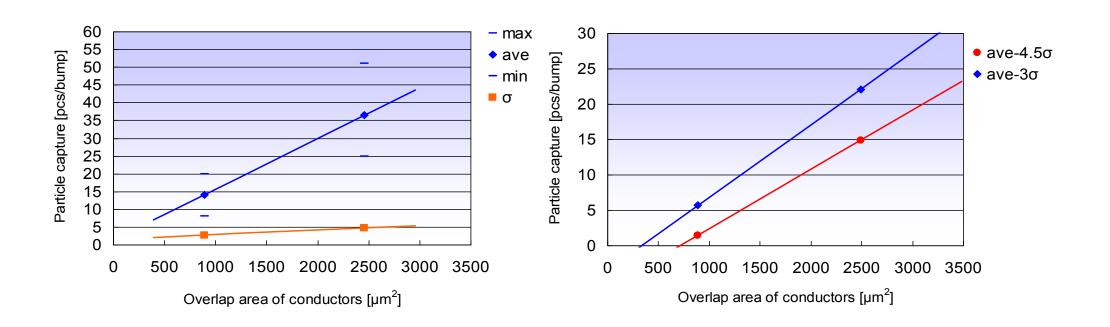
Reaction rate

IC : 1.8mmx20mm, t= 0.5mm, Au-plated bump 30μmx85μm, h=15μm

Glass : t = 0.5 mm, ITO 10 $\Omega\square$ Bonding condition : 140-190°C, 60MPa, 5sec

Measurement : FT-IR Method

Particle capture


IC : 1.8mmx20mm, t= 0.5mm,

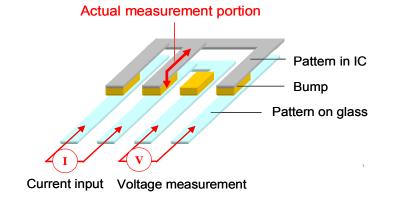
Au-plated bump, h= 15µm

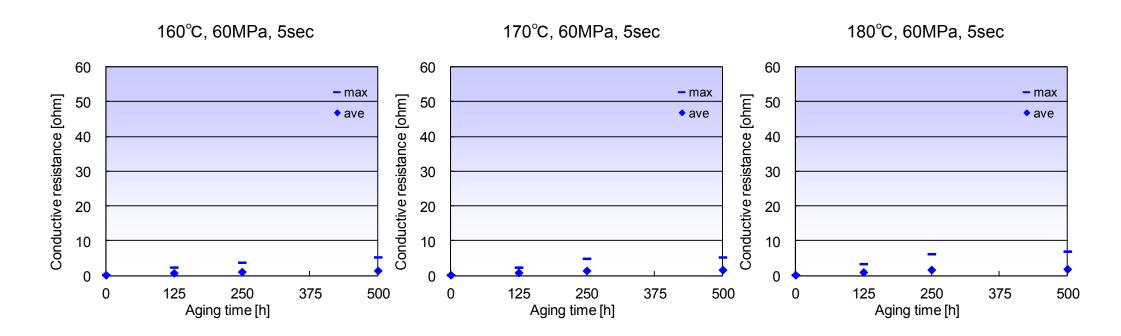
Glass : t=0.5mm , ITO 10 $\Omega\square$

Bonding condition : 170°C, 60MPa, 5sec

Measurement : 100bumps

Conductive resistance


IC : 1.8mmx20mm, t= 0.5mm,

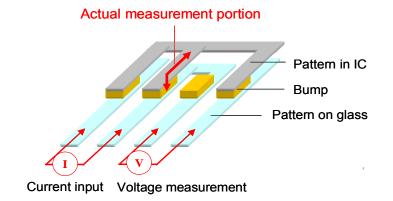

Au-plated bump 30µmx85µm, h=15µm

Glass : t = 0.5 mm, ITO 10 Ω/\Box

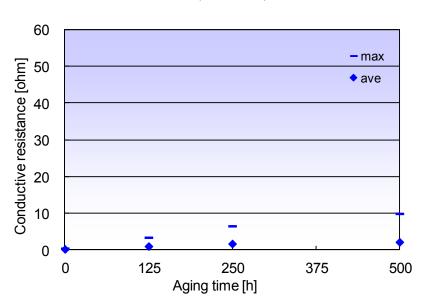
Bonding condition : 160 /170 /180°C, 60MPa, 5sec

Aging condition : 85°C85%R.H.

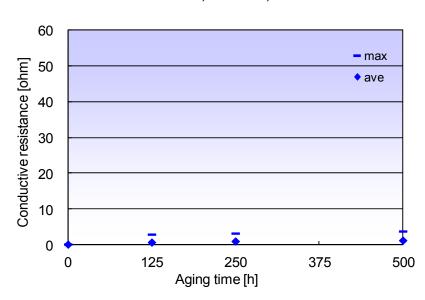
Conductive resistance


IC : 1.8mmx20mm, t= 0.5mm,

Au-plated bump 30µmx85µm, h=15µm


Glass : t = 0.5 mm, ITO 10 Ω/\Box

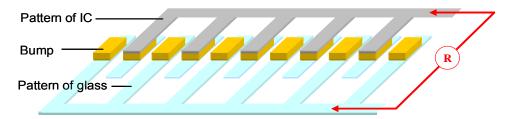
Bonding condition : 170°C, 40/80 MPa, 5sec

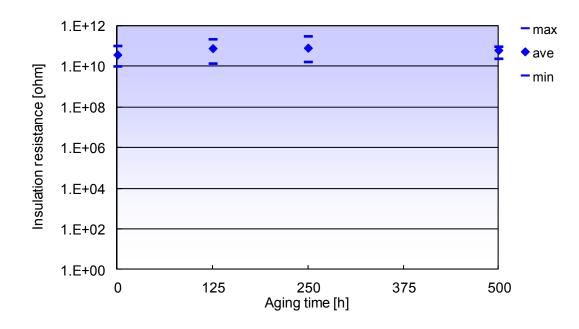

Aging condition : 85°C85%R.H.

170°C, 40MPa, 5sec

170°C, 80MPa, 5sec

Insulation resistance


IC : 1.5mmx13mm, t= 0.5mm, Au-plated bump 25x140um


Bump space=10µm, The number of gap =16sets (10points/set)

Glass : t = 0.5 mm, ITO 10 Ω/\Box

Bonding condition : 170°C, 60MPa, 5s

Aging condition : 85°C85%R.H.

